ESTERS OF 1,4-DIHYDROPYRIDINE-3- AND -3,5-CARBOTHIOLIC ACIDS

UDC 547.827.07:542.943

B. A. Vigante, Ya. Ya. Ozols,G. Ya. Dubur, Yu. I. Beilis,E. M. Belash, and V. V. Prezhdo

Methods for the preparation of esters of 1,4-dihydropyridine-3- and -3,5-carbothiolic acids were developed, and their structure and reactivity were studied. A comparative analysis was made of the spectroscopic characteristics of sulfur-containing esters of the 1,4-dihydropyridine series and their oxygen analogs. More strongly expressed electron-acceptor properties of the COSAlk groupings as compared with alkoxycarbonyl substituents were observed.

Highly effective coronary dilators [1, 2] and hypotensive agents [3] are found among 4aryl- and 4-hetaryl-1,4-dihydropyridines. 4-Unsubstituted 1,4-dihydropyridines are of practical interest as potential antioxidants [4].

The aim of the present research was to synthesize and study the reactivity (in alkylation, oxidation, and transesterification) of a new series of 1,4-dihydropyridines I with alkylthio- and benzylthiocarbonyl substituents in the 3 and 3,5 positions, from which one might expect a number of specific chemical, physical, and biological properties due to the introduction of a sulfur atom in place of the oxygen atom in the ester grouping. Sulfur-containing esters of the 1,4-dihydropyridine series I ($R = R^2 = H$, $R^1 = alkyl$ and benzyl, and $R^3 = alkyl$ thio and benzylthio) are obtained by condensation of S-substituted esters of thioacetoacetic acid urotropin in the presence of ammonium acetate by heating in dioxane.

For the preparation of 4-substituted 1,4-dihydropyridines, S-substituted esters of thioacetoacetic acid are condensed with aldehydes and ammonia by refluxing in dioxane.

Unsymmetrical 3-O- and 5-S-substituted 1,4-dihydropyridine esters (I, $R^1 = C_2H_5$, $CH_2C_6H_5$, $R^3 = OC_2H_5$) are obtained either by condensation of ethyl β -aminocrotonate with the α -arylidene-S-ethyl ester of thioacetoacetic acid or by reaction of S-substituted esters of β -amino-thiocrotonic acid with α -ethylidene and α -benzylidene derivatives of ethyl acetoacetate. The latter method is preferable, for it is technologically simpler to realize.

The oxidation of 1,4-dihydropyridines I with nitrogen oxides leads to the corresponding pyridines II (Table 2).

4-Methyl-1,4-dihydropyridines with a phenylthio substituent in the β position of the ethoxy group (III, X = H, SC₆H₅) were obtained on the basis of known key compounds, viz., the corresponding β -chloroethoxycarbonyl derivatives [5], by their reaction with sodium thiophen-oxide. This expands the possibilities of modification of the substituents in the 3 and 5 positions of the dihydropyridine system.

Three absorption bands that are characteristic for monocyclic 1,4-dihydropyridines are observed in the UV region of the spectrum for I and III (Table 1); in the spectra of I one observes a 35-50 nm bathochromic shift of the average and long-wave maxima as compared with

Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga 226006. Kharkov Institute of Public Nutrition, Kharkov 310051. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 219-228, February, 1982. Original article submitted March 25, 1981.

= H) 2,6-Dimethyl-1,4-dihydropyridine-3- and -3,5-carbothiolic Acid Esters (I, ${\rm R}^2$ TABLE 1.

3000-3600 cm ⁻¹ C H N s $M_{113}MO_{2}S_{2}$ G_{1} N s $I_{15}I_{13}$ 0. 1655. 3360 54,3 6,9 5,0 22,4 $C_{13}H_{13}NO_{2}S_{2}$ 54,7 6,7 4,9 22,5 A 0. 1650. 3335 56,3 7,2 4,1 15,1 $C_{24}H_{21}NO_{2}S_{2}$ 66,1 4,7 21,4 B 0. 1660. 3335 56,3 7,2 4,1 17,2 $C_{14}H_{21}NO_{2}S_{2}$ 66,1 4,7 21,4 B 0. 1650. 3330 67,3 5,6 4,1 17,2 $C_{14}H_{21}NO_{2}S_{2}$ 66,1 4,7 21,4 B 0. 1650. 3330 63,6 6,8 4,1 17,2 $C_{14}H_{21}NO_{2}S_{2}$ 63,1 6,0 13,2 C 0. 1650. 3330 65,1 6,0 7,7 17,2 $C_{14}H_{21}NO_{2}S_{2}$ 56,1 5,5 6,9 13,2 C 0. 1660. 3330 59,1 6,0 7,7 17,7 56 6,9	R^{i} R^{3} mp, C UV spectrum λ_{max} ,	\mathbb{R}^3 mp, \mathbb{C} UV spectrum λ_{\max}	mp, C UV spectrum λ_{max}	UV spectrum λ_{\max}		R spectrum at 1600-1800 and		Four	1d, %		Empirical		Calc.,	40		Method of svn-	Yield . مرہ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1	nm (log ɛ)	3000-3600 cm ⁻¹	υ	н	z	S	IOTITIA	υ	H.	z	s	thesis	0/2
	$_{2}^{2}H_{5}$ SC ₂ H ₅ 142–143 205	SC_2H_5 142—143 205	142-143 205	205	(3,94); 278 (4,26);	1600, 1655, 3360	54,3	6,9	5,0	22,4	$C_{13}H_{19}NO_2S_2$	54,7	6,7	4,9	22,5	A	74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2H_2C_6H_5$ $SCH_2C_6H_5$ $109-110$ 205	SCH ₂ C ₆ H ₅ 109-110 205	109-110 205	205	(4,39); 278 $(4,28)$;	1600, 1670, 3320	67,3	5,5	4,1	15,1	$C_{23}H_{23}NO_2S_2$	67,5	5,7	3,4	15,7	А	70
	$Z_2 H_5$ SC ₂ H ₅ 116 205	$ SC_2H_5 $ 116 $ 205 $	116 205	205	(3,94); 255 $(4,09)$; (3,94); 255 $(4,09)$;	1610, 1660, 3335	56,3	7,2	4,7	21,0	$C_{14}H_{21}NO_2S_2$	56,2	7,1	4,7	21,4	В	20
	$CH_2C_6H_5$ $SCH_2C_6H_5$ 67 203	SCH ₂ C ₆ H ₅ 67 203	67 203 $(4$	203 (4	(4,39); 259 sh (4,39); 259 sh (13); 280 $(4,28)$;	1600, 1650, 3300	67,9	6,0	3,1	15,3	$C_{24}H_{25}NO_2S_2$	68,1	6,0	3,3	15,1	e	35
	2_{2} H ₅ SC ₂ H ₅ $ 32-133 204 300$	$\left SC_{2}H_{5} - 132 - 133 \right 204 - 390 $	$\left 132 - 133 \right 204 $	204 ((4,01) (4,25); 273 (4,17);	1610, 1655, 3310	63,6	6,8	4,1	17,2	$C_{19}H_{23}NO_2S_2$	63,1	6,4	3,9	17,8	υ	15
	$CH_2C_6H_5$ SCH ₂ C ₆ H ₅ 135 203 ($\left \text{SCH}_2 \text{C}_6 \text{H}_5 \right = 135 \left \begin{array}{c} 203 \\ 203 \end{array} \right $	135 203 (203 ((4,42); 275 $(4,24)$;	1600, 1645, 3300	72,0	5,9	3,1	12,8	$C_{29}H_{27}NO_2S_2$	71,7	5,6	2,9	13,2	υ	22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_2 H_5$ SC ₂ H ₅ 150 203 (4	SC ₂ H ₅ 150 203 (4	150 203 (4)	203 (4	(3,30) (,24); 275 (4,48); (,271)	1610, 1650, 3390	55,8	5,2	6,5	15,1	$C_{19}H_{22}N_2O_4S_2$	56,1	5,5	6,9	15,8	[L]	80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2_{2}H_{5}$ SC ₂ H ₅ SC ₂ H ₅ 241 205 (252)	SC ₂ H ₅ 241 205 (241 205 (·	205 (-	$\left(\frac{1}{25}\right)$; 264 (4,32); $\left(\frac{1}{2307}\right)$;	1610, 1660, 3230	59,1	6,0	7,7	17,2	C ₁₈ H ₂₂ N ₂ O ₂ S ₂	59,6	6,1	7,7	17,7	υ	40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2H_2C_6H_5$ SCH ₂ C ₆ H ₅ 255 204 (4	SCH ₂ C ₆ H ₅ 255 204 (4	255 204 (4	204 (4	(42); 264 (4,22); (420);	1610, 1655, 3250	68,6	5,4	5,9	12,8	$C_{28}H_{26}N_2O_2S_2$	69,1	5,4	5,8	13,2	υ	35
$ \begin{array}{c} (4,25), & (5,7), & (5,$	C_2H_5 OC ₂ H ₅ 110-111 247 (4.1)	$\left \text{OC}_2 \text{H}_5 \right 110-111 \left 247 \right 1.0$	$\left 110 - 111 \right 247$	247	(4,20); 263 sh (4,20); 263 sh (4,20); 263 sh	1600, 1640, 1655, 3305	59,7	7,6	5,2	10,6	C ₁₄ H ₂₁ NO ₃ S	59,3	7,5	4,8	11,3	A	69
$ \begin{array}{c} (4,00) \\ (3,81) \\ (3,12) \\ (3,1$	$CH_2C_6H_5$ OC ₂ H ₅ OC ₂ H ₅ 153 $203^{(1+1)}_{(4,3)}$	OC ₂ H ₅ 153 203 (4,3	153 203 (4,3) (4	$\begin{bmatrix} 203 \\ (4,3) \\ (4,3) \\ (4,2) \\ (4,3$	(4,25); 250 sh (4,25); 250 sh (3); 270 $(4,37)$;	1600, 1620, 1660, 3335	66,2	6,3	4,3	8,6	C ₁₉ H ₂₃ NO ₃ S	66,1	6,7	4,1	9,3	Ð	55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2_2 H ₅ OC ₂ H ₅ 136-137 205 (OC_2H_5 136—137 205 (136-137 205 (205 (4,09); 260 (4,23);	1600, 1660, 1690, 3340	65.7	6,6	4,4	9,5	C ₁₉ H ₂₃ NO ₃ S	66,1	6,7	4,1	9,3	D	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2H_2C_6H_5$ OC ₂ H ₅ OC ₂ H ₅ 159 203	OC_2H_5 159 203 .	159 203	203	(4,42); 258 $(4,28)$;	1610, 1630, 1660, 3335	70,1	6,1	3,7	7,1	C ₂₄ H ₂₅ NO ₃ S	70,7	6,2	3,4	7,9	D	38
	C ₂ H ₅ OC ₂ H ₅ 130 205 0 272 375 375 375 375	OC ₂ H ₅ 130 205 0 272 375	130 205 (272 375 375	205 (272 (375 375	$\begin{array}{c} (0,3^{+}) \\ (4,24); 246 \\ (4,12); \\ sh \\ (3,75) \end{array}$		57,8	5,6	7,1	8,0	C ₁₉ H ₂₂ N ₂ O ₅ S	58,4	5,7	7,2	8,2	ш	75

2,6-Dimethylpyridine-3- and -3,5-carbothiolic Acid Esters (II) TABLE 2.

	Yield,	%	88 85 56 57 77 56 57 77
		s	$\begin{array}{c} 22,6\\ 15,7\\ 17,8\\ 17,8\\ 15,9\\ 13,2\\ 9,3\\ 9,3\\ \end{array}$
	• %	Z	4,1 4,1 4,1 8 9 9 7 7 9 7 7 9 7 9 7 9 7 9 7 9 7 9 7
	Calc.	I-I	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
		U	55,1 67,8 63,5 60,0 56,4 69,4 66,4
	Empirical	formula	C ₁₃ H ₁₇ NO ₂ S ₂ C ₂₃ H ₂₁ NO ₂ S ₂ C ₁₃ H ₂₁ NO ₂ S ₂ C ₁₃ H ₂₀ N ₂ O ₂ S ₂ C ₁₃ H ₂₀ N ₂ O ₄ S ₂ C ₁₃ H ₂₀ N ₂ O ₄ S ₂ C ₃₃ H ₂₄ N ₂ O ₂ S ₂ C ₁₃ H ₂₄ N ₂ O ₂ S ₂
1		s	22,4 15,3 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0
	• %	z	,20,2,20 2,2,2,20,1,1 2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1
		н	0,0,4,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,
		U U	54,3 67,8 59,5 65,9 65,9 65,9
	R spectrum at		1540, 1590, 1670 1550, 1599, 1670 1550, 1595, 1670 1550, 1590, 1665 1550, 1590, 1665 1550, 1600, 1675 1550, 1600, 1675 1555, 1670, 1720
	mp, C		48 56 106 107 118119 104 74
	č	ž	SC2H5 SCH5 SCH5 SC2H5 SC2H5 SC2H5 SCCH5 SCH3 CGH5 OC2H5
	ĸ		C2H5 C2H5 C2H5 C2H5 C2H5 C2H5 C2H5 C2H5
		¥	H H C ₆ H ₅ C ₆ H ₄ N (3') C ₆ H ₄ NO ₂ (4') C ₆ H ₄ N (3') C ₆ H ₅

R	R1	R ²	R3	δ, ppm
H*	C ₂ H ₅	н	SC ₂ H ₅	1,2 (t, 6H, 2CH ₃); 2,16 (s, 6H, 2,6-CH ₃); 2,87 (q, 4H, 2SCH ₂); 3,49 (s, 2H, 4-CH ₂); 5,46
CH3	C2H5	н	OC ₂ H ₅	(5, 1H, N-H) $(0,84 (d, 3H, 4-CH_3); 1,11 (t, 3H, SCH_3); 1,15$ $(t, 3H, OCH_3); 2,15 (s, 6H, 2,6-CH_3); 2,76$ $(q, 2H, SCH_2); 3,82 (q, 1H, 4-CH); 4,6$
C_6H_5	C ₂ H ₅	н	SC ₂ H ₅	(q, 2H, OCH ₂); 8,82 (S, 1H, N-H) 1,08 (t, 6H, 2CH ₃); 2,22 (S, 6H, 2,6-CH ₃); 2,74 (q, 4H, 2SCH ₂); 5.18 (S, 1H, 4-CH); 7,11 (s, aromatic protons); 9,27 (s,
C_6H_5	C ₂ H ₅	Н	OC₂H₅	1H, N-H) 1,0 (t, 3H, SCH ₃); 1,11 (t, 3H, OCH ₃); 2,16 (s, 3H, 2-CH ₃); 2,24 (s, 3H, 6-CH ₃); 2,67 (q, 2H, SCH ₂); 4,0 (q, 2H, OCH ₂); 5,0 (s, 1H, 4-CH); 7,11 (s, aromatic protons):
$\begin{array}{c} C_6H_4NO_2\\ (4')\end{array}$	C ₂ H ₅	н	SC2H5	9,04 (s, 1H, N—H) 1,15 (t, 6H, 2CH ₃); 2,27 (s, 6H, 2,6-CH ₃); 2,75 (q, 4H, 2SCH ₂); 5,29 (s, 1H, 4-CH); 7,38; 7,47; 7,96; 8,07 (4s, 4H, C ₆ H ₄ NO ₂ (4'));
C ₅ H ₄ N (3')*	C ₂ H ₅	Н	SC₂H₅	9,22 (s, 1H, N—H) 1,07 (t, ∂H , 2CH ₃); 2,27 (s, ∂H , 2, $\partial -CH_3$); 2,76 (q, 4H, 2SCH ₂); 5,18 (s, 1H, 4-CH); 7,33—8,31 (t, 4H, $C_5H_4N(3')$); 9,4 (s, 1H,
Н	CH ₂ C ₆ H ₅	н	SCH₂C₅H₅	N-H 2,56 (s , 6H, 2,6-CH ₃); 4,02 (s , 2H, 4-CH ₂); 4,27 (s , 4H. 2SCH ₂); 7,24 (s , 10H,
CH_3	CH ₂ C ₆ H ₅	н	SCH₂C ₆ H₅	aromatic protons); 8,91 (s 1H, NH) 0,89 (d, 3H, 4-CH ₃); 2,22 (s, 6H, 2,6-CH ₃); 3,78 (q, 1H, 4-CH); 4,0 (s, 4H, 2SCH ₂); 7,13 (s, 10H, aromatic protons);
C_6H_5	CH ₂ C ₆ H ₅	н	SCH₂C ₆ H₅	9,22 (s, 1H, N—H) 2,24 (s, 6H, 2,6-CH ₃); 4,02 (s, 4H, 2SCH ₂); 5,2 (s, 1H, 4-CH); 7,16 (t, 15H, aro-
CH ₃	CH ₂ C ₆ H ₅	H	OC_2H_5	matic protons); 9,37 (s, 1H, NH) 0,82 (d, 3H, 4-CH ₃); 1,13 (t, 3H, CH ₃); 2,13 (s, 3H, 2-CH ₃); 2,18 (s, 3H, 6-CH ₃); 3,78 (q, 1H, 4-CH); 4,02 (q, 2H, OCH ₂); 4,04
C_6H_5	CH₂C ₆ H₅	н	OC ₂ H ₅	(\$, 2H, SCH ₂); 7,2 (\$, 5H, aromatic protons); 9,56 (\$, 1H, N-H) 1,11 (t, 3H, CH ₃); 2,16 (\$, 3H, 2-CH ₃); 2,27 (\$, 3H, 6-CH ₃); 3,93 (\$, 2H, SCH ₂); 3,97 (q, 2H, OCH ₂); 4,98 (\$, 1H, 4-CH); 7,07, 7,13 (2s, aromatic protons); 10.66
H*	C_2H_5	CH3	SC_2H_5	(s, 1n, $N-n$) 1,20 (t, 6H, 2CH ₃); 2,30 (s, 6H, 2,6-CH ₃); 2,84 (q, 4H, 2SCH ₂); 3,09 (s, 3H,
· CH ₃	C_2H_5	СНз	SC_2H_5	N-CH ₃); 3,31 (\mathfrak{s} , 2H, 4-CH ₂) 0,83 (\mathfrak{d} , 3H, 4-CH ₃), 1,18 (\mathfrak{t} , 6H, 2CH ₃); 2,28 (\mathfrak{s} , 6H, 2,6-CH ₃); 2,80 (\mathfrak{q} , 4H, 2SCH ₂);
C_6H_5	C_2H_5	CH3	SC_2H_5	3,08 (s, 3H, N—CH ₃); 4,03 (q, 1H, 4-CH) 1,09 (t, 6H, 2CH ₃); 2,38 (s, 6H, 2,6-CH ₃); 2,80 (q, 4H, 2SCH ₂); 3,13 (s, 3H, N—CH ₃); 3,98 (s, 1H, 4-CH); 7,07 (s, 5H,
C ₆ H ₄ NO ₂ (4′)	C_2H_5	CH₃	SC ₂ H ₅	aromatic protons) 1,11 (t, 6H, 2CH ₃); 2,36 (s, 6H, 2,6-CH ₃); 2,82 (G, 4H, 2SCH ₂); 3,13 (s, 3H, NCH ₃), 5,38 (s, 1H, 4-CH); 7,24; 7,36;
Н	$CH_2C_6H_5$	CH3	SCH ₂ C ₆ H ₅	7,96; 8,07 (4s, 4H, $C_6H_4NO_2(4')$ 2,31 (s, 6H, 2,6-CH ₃); 3,11 (s, 3H, N-CH ₃); 3,20 (s, 2H, 4-CH ₂); 4,02 (s, 4H, 2SCH ₂); 7,18 (s, 10H, aromatic protons)

*These spectra were obtained from solutions in deuterochloroform.

the oxygen-containing analogs [6, 7], which indicates stronger conjugation between the alkyl-thiocarbonyl substituent and the β -aminovinyl system than in the case of oxygen esters.

The effect of the substituents in the 1 and 4 positions follows the same principles as in the 2,6-dimethyl-3,5-dialkoxycarbonyl-1,4-dihydropyridine series [8]; replacement of the hydrogen atom attached to the nitrogen atom by an alkyl group gives rise to a 20-25 nm hypso-chromic shift of the long-wave maximum.

For I ($\mathbb{R}^2 = \mathbb{H}$, alkyl, Tables 1 and 6) one observes a decrease in the high-frequency absorption bands in the IR spectra of, on the average, 40-50 cm⁻¹ as compared with the oxygen-

containing esters [6]; this is similar to the acylthiol esters of the aliphatic and aromatic series [9-11]. The oxidized forms — pyridines of the II type — are characterized by higher values (10-15 cm⁻¹) of the high-frequency absorption bands (Table 2) than the corresponding dihydropyridines I. A second absorption band in the double bond region also appears in the case of I that are unsymmetrically substituted in the 3 and 5 positions ($R^1 = C_2H_5$, $CH_2C_6H_5$, $R^3 = OC_2H_5$) (Table 1); however, a band at 1680-1690 cm⁻¹, which can be assigned primarily to the ethoxycarbonyl substituent, is observed only when $R = C_6H_5$.

The PMR spectra of I are in agreement with structure I with respect to the chemical shifts and integral intensities of the signals (Table 3).

To establish the character of the electronic effect of alkylthiocarbonyl substituents in the investigated β -aminovinylcarbonyl grouping of the 1,4-dihydropyridine system we determined the electrochemical oxidation potentials of I (Table 4). It is known that 1,4-dihydropyridines are oxidized more easily when less effective electron-acceptor β substituents are present [12]. Replacement of one oxygen atom of the alkoxy group in the ester residue by a sulfur atom leads to a 30-40 mV increase in the electrolytic oxidation potential, whereas the introduction of sulfur atoms in place of oxygen in both ester groups leads to doubling of the effect. This confirms the more strongly expressed overall electron-acceptor effect of alkylthiocarbonyl groups than that of alkoxycarbonyl substituents. The same conclusion also follows from a determination of the rate constants for oxidation of I (R = R² = H, R¹ = C₂H₅, R³ = SC₂H₅; R¹ = CH₂C₆H₅, R³ = SCH₂C₆H₅) with chloranil in benzene, which are 60 and 33 K units•10² (liters-mole⁻¹/sec⁻¹), while the corresponding oxygen-containing esters have oxidation rate constants that are greater by a factor of ~10 (450 and 320, respectively) [13].

The introduction of a methyl or phenyl group in the 4 position of sulfur-containing esters I leads to the same increase in the electrochemical oxidation potentials as in the case of esters of the oxygen series [12, 14] (70-100 and 150-190 mV, respectively).

It was established by a study of the reactivities of esters I that they, like oxygencontaining esters [15], undergo transesterification when they are heated with alkanols in the presence of a basic catalyst (OH⁻, OAlk⁻). In the case of unsymmetrically substituted I ($R^1 = C_2H_5$, $CH_2C_6H_5$, $R^3 = OC_2H_5$) only the S-substituted ester substituent undergoes alcoholysis under certain conditions (depending on the amount of catalyst and the experimental time); this confirms that it is more reactive in transesterification. The reaction takes place faster and gives the products in higher yields in the case of 4-unsubstituted esters I ($R = R^2 = H$) (Table 5).

Compounds I ($\mathbb{R}^2 = \mathbb{H}$) are alkylated at the nitrogen atom by heating with alkyl halides in acetonitrile in the presence of alkali, whereas the oxygen-containing esters of the 1,4-dihy-dropyrimidine series, inasmuch as they are weak heterocyclic N-H acids, are alkylated only when sodium hydride is used as the basic agent [8]. 4-Substituted 1,4-dihydropyridines are the most reactive compounds in alkylation (Table 6).

EXPERIMENTAL

The IR spectra of mineral oil or hexachlorobutadiene suspensions of the compounds were recorded with a UR-20 spectrometer. The UV spectra of $4 \cdot 10^{-5}$ M solutions of the compounds in ethanol were recorded with a Specord UV-vis spectrophotometer. The PMR spectra were recorded with a Bruker WH-90/DS spectrometer. The electrochemical oxidation potentials were determined by a previously described method with an LP-60 recording polarograph with acetonitrile as the solvent and a rotating platinum microelectrode [16]. The rate constants for oxidation with chloranil in benzene at 37° C were determined spectrophotometrically from the disappearance of the long-wave absorption maximum at 418 nm by the method in [13].

2,6-Dimethyl-3,5-bis(ethylthiocarbonyl)-1,4-dihydropyridine A) A mixture of 2.92 g (0.02 mole) of thioacetoacetic acid S-ethyl ester, 1.38 g (0.06 mole) of urotropin, 0.7 g of ammonium acetate, and 10 ml of dioxane was refluxed for 15 min, after which it was diluted with water and allowed to stand at 0°C for 12 h. The resulting yellow precipitate was separated and crystallized from acetonitrile. The characteristics of the synthesized compounds are presented in Table 1.

2,4,6-Trimethyl-3,5-bis(ethylthiocarbonyl)-1,4-dihydropyridine. B) A mixture of 2.92 g (0.02 mole) of thioacetoacetic acid S-ethyl ester, 0.92 g (0.015 mole) of 1-aminoethanol, and 10 ml of dioxane was refluxed for 1 h, after which it was poured into water, and the resulting yellow oil was extracted with ether. The extract was dried with anhydrous sodium sulfate,

TABLE 4. Peak and Half-Wave Potentials in the Electrochemical Oxidation of Esters of Derivatives of the 1,4-Dihydropyridine Series*

R	Ri	\mathbb{R}^2	<i>E</i> _{<i>n</i>} , V	E_{W2}, \mathbf{V}
H CH_3 C_6H_5 $C_6H_4NO_2$ (4') CH_3 C_6H_5 C_6H_5 C_6H_5 C_6H_5 C_6H_5 H C_6H_5 H C_6H_5	$\begin{array}{c} {\rm COSC_2H_5} \\ {\rm COSC_2H_5} \\ {\rm COSC_2H_5} \\ {\rm COSC_2H_5} \\ {\rm COOC_2H_5} \\ {\rm COOCH_2C_6H_5} \\ {\rm COOCH_2C_6H_5} \\ {\rm COOCH_2C_6H_5} \\ {\rm COSCH_2C_6H_5} \\ {\rm COSCH_2C_6H_5} \\ {\rm COSCH_2C_6H_5} \\ {\rm COSCH_2C_6H_5} \end{array}$	$\begin{array}{c} \text{COSC}_{2}\text{H}_{5} \\ \text{COOC}_{2}\text{H}_{5} \\ \text{COOC}_{2}\text{H}_{5} \\ \text{COOC}_{2}\text{H}_{5} \\ \text{COOC}_{2}\text{H}_{5} \\ \text{COOC}_{2}\text{H}_{5} \\ \text{COSC}_{2}\text{L}_{6}\text{H}_{5} \\ \text{COSC}_{2}\text{L}_{6}\text{H}_{5} \\ \text{COSC}_{2}\text{L}_{6}\text{H}_{5} \\ \text{COOC}_{2}\text{L}_{5} \\ \text{COOC}_{2}\text{L}_{5} \\ \text{COOC}_{2}\text{H}_{5} \\ \text{COOC}_{2}\text{H}_{5} \\ \text{COOC}_{2}\text{H}_{5} \\ \end{array}$	1,06 1,12 1,18 1,28 1,08 1,15 1,25 0,97 1,04 1,12 1,22 1,02 1,20 0,97 1,16 1,20 1,16 1,20 1,16	0,97 1,08 1,10 1,20 1,06 1,10 1,18 0,89 0,96 1,08 1,18 0,93 1,11 0,85 1,06 1,10 1,06

*The experimentally found peak and half-wave potentials in the electrochemical oxidation of some oxygen-containing esters differ somewhat from those presented in [12, 14].

the ether was removed, and the residue was purified by chromatography with a column filled with Al_2O_3 [elution with chloroform-hexane-acetone (9:7:1)]. The solvent was removed, and the residue was crystallized from acetonitrile-water. The characteristics of the synthesized compounds are presented in Table 1.

2.6-Dimethyl-3.5-bis(ethylthiocarbonyl)-4-phenyl-1.4-dihydropyridine. C) A mixture of 4.38 g (0.03 mole) of thioacetoacetic S-ethyl ester, 1.52 g (0.015 mole) of benzaldehyde, 1.5 ml of 25% ammonium hydroxide, and 10 ml of dioxane was refluxed for 6 h, after which it was poured into water, and the liberated yellow oil was purified by chromatography as in method B. The characteristics of the synthesized compounds are presented in Table 1.

2,4,6-Trimethyl-3-ethoxycarbonyl-5-(ethylthiocarbonyl)-1,4-dihydropyridine. D) A mixture of 2.98 g (0.02 mole) of β -aminothiocrotonic acid S-ethyl ester,* 3.12 (0.02 mole) of α ethylideneacetoacetic ester,[†] and 10 ml of dioxane was refluxed for 1 h, after which it was diluted with water and cooled at 0°C for 12 h to give a yellowish substance, which was crystallized from methanol-hexane. The characteristics of the synthesized compounds are presented in Table 1.

 $\frac{2,6-\text{Dimethyl-3},5-\text{bis}(\text{ethylthiocarbonyl})-4-(p-\text{nitrophenyl})-1,4-\text{dihydropyridine. E) A}{mixture of 1.35 g (0.005 mole) of a-(p-\text{nitrobenzylidene})-acetoacetic acid S-ethyl ester, 0.76 g (0.005 mole) of β-aminothiocrotonic acid S-ethyl ester, and 5 ml of absolute ethanol was refluxed for 2 h, after which it was diluted with water and cooled at 0°C for 12 h. The yellow precipitate was crystallized from ethanol. The characteristics of the synthesized compounds are presented in Table 1.$

<u>B-Aminothiocrotonic Acid S-Ethyl Ester.</u> A solution of 14.6 g (0.1 mole) of thioacetoacetic acid S-ethyl ester in 20 ml of dry benzene was saturated with dry ammonia at 0°C in the course of 30 min, after which it was allowed to stand at room temperature for 24 h. It was then washed with water and dried with anhydrous sodium sulfate. The solvent was removed by distillation *in vacuo*, and the residue was crystallized from benzene-hexane to give 5.1 g (35%) of a white substance with mp 89°C. PMR spectrum: 1.07 (t, 3H, CH_3), 1.73 (s, 3H, CH_3), 2.67 (q, 2H, SCH_2), 4.71 (s, 1H, CH=), 7.36 (s, 1H, NH), and 8.24 ppm (s, 1H, NH). Found:

^{*}The β -aminocrotonic acid esters were obtained by the method in [17].

^{\dagger}The ylideneacetoacetic esters were obtained by the method in [18].

Starting compound $R^{a} = SC_{2}H_{5}$, $R^{1} = C_{2}H_{5}$, $R^{a} = SC_{2}H_{5}$, $R^{1} = C_{2}H_{5}$, $R^{a} = SC_{2}H_{5}$, $R^{1} = CH_{2}C_{6}H_{5}$, $R^{2} = H_{1}$, $R^{3} = OC_{2}H_{5}$, $R^{2} = H_{2}$, $R^{3} = OC_{2}H_{5}$, $R^{2} = H_{2}$, $R^{3} = OC_{2}H_{5}$, $R^{3} = H_{2}$, $R^{3} = OC_{2}H_{5}$, $R^{$	Starting ester: pottassium hydroxide 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1	Reagent C2H50H iso-C,H50H C2H50H C2H50H C2H50H iso-C3H70H iso-C3H70H CH30H CH30H	Reac- tion 4 4 4 4 1 1 1 2 1 2 1 2 1 10 10	Reaction product 2. 6-Dimethyl-3.5-diethoxy- carbonyl-1,4-dihydropy- carbonyl-1,4-dihydro- pyndine [17] 2. 6-Dimethyl-4-methyl-3.5- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- diethoxycarbonyl-1,4-dihy- bonyl-1,4-dihydropyridine 2,4,6-Trimethyl-3-ethoxy- carbonyl-5-methoxycarbon- yl-1,4-dihydropyridine 2. 6-Dimethyl-3-ethoxy- carbonyl-5-methoxycarbon- yl-1,4-dihydropyridine	<i>Y</i> ield, % 68 68 50 50 54 54 54 54 54 54 54 54 53 54 54 53 54 53 54 53 54 50 55 54 50 55 54 55 56 56 56 56 56 56 56 56 56 56 56 56	Characteristics of the reaction product The section product characteristics of the reaction product C ₁₅ H ₂₃ NO. Calculated: C 54,6; H 8,0; N 5,0%. C ₁₅ H ₂₃ NO. Calculated: C 54,0; H 8,2; N 5,0%. PMR spectrum in DMSO: 0,76 (4, 3H, 4-CH); 1,13 (m, 9H, 3CH ₃); 2,11 (s, 6H, 2,6-CH ₃); 3,55 (4, 1H, 4-CH); 8,49 ppm (5, 1H, NH) 3CH ₃); 2,11 (s, 6H, 2,6-CH ₃); 3,55 (4, 1H, 4-CH); 8,49 ppm (5, 1H, NH) 134* Found: C 61,9; H 7,4; N 5,6%. C ₁₃ H ₁₃ NO4, Calculated: C 61,6; H 7,6; N 5,5%, PMR spectrum in DMSO: 0,84 (4, 3H, 4-CH ₃); 3,50 (ppm, (s, 1H, NH) mp. 134* Found: C 68,9; H 6,7; N 4,2%. Calculated: C 61,6; H 7,6; N 5,5%, PMR spectrum in DMSO: 0,242, 362 pm, 9,0R (9, 1H, 4-CH); etchtum, Amaz 206, 242, 362 pm, 7H, 8,11, NH) mp. 157-158* Found: C 68,6; H 6,7; N 4,4%, UV pectrum, Amaz 206, 242, 362 pm, 7H, 3H, CH ₃); 2,06, CH ₃); CC14, 11, 2); 1,11 (t, 3H, CH ₃); 2,18 (s, 6H, 2,6-CH ₃);
$C_{c}^{2} = C_{6}H_{5}, R^{1} = CH_{2}C_{6}H_{5}, R^{2} = H_{1}, R^{3} = OC_{2}H_{5}$		СН₃ОН	24	The same	75	3.49 (s, 3H, OCH ₃); 3,93 (q, 2H, OCH ₂); 4,73 (s, 1H, 4CH); 7,02 (s, aromatic protons); 8.40 ppin (s, 1H, NH)

TABLE 5. Transesterification of 2,6-Dimethy1-1,4-dihydropyridine-3- and -3,5-carbothiolic Acid Es-

175

Yield	20/	80 49 61	50	46	65	81	75	
	s	21,4 20,5 15,3	15,1	14,7	17,1	20,4	14,7	
, ø%	z	4,7 4,5 6,7	3,3	3,2	3,7	4,5	3,2	
Calc.	H	7,1 7,4 5,8	6,0	6.2	6,7	7,7	6,2	
Ľ	υ	56,2 57,5 57,1	68,1	68,6	64,0	57,3	68,6	
Empirical	formula	$C_{15}H_{21}NO_2S_2 C_{15}H_{23}NO_2S_2 C_{20}H_{21}N_2O_4S_2$	$C_{24}H_{25}NO_2S_2$	$C_{25}H_{27}NO_2S_2$	$\mathrm{C_{20}H_{25}NO_2S_2}$	$\mathrm{C_{15}H_{24}NO_2S_2}$	$C_{25}H_{27}NO_2S_2$	
	s	21,5 20,0 15,0	14,9	14,2	16,7	19,9	14,4	
, %	z	4,5 6,6	3,1	3,3	3,5	4,7	3,0	
Found	Н	7,0 7,3 5,8	6,1	6,1	6,8	7,5	6,1	
	c	$56,2 \\ 57,7 \\ 57,2 \\ 57,2 \\ $	67,7	68,3	64,0	57,5	68,4	
pectr um at	0-1800 cm ⁻¹	0, 1600, 1650 5, 1600, 1650 0, 1600, 1650	0, 1600, 1650	0, 1590, 1650), 1610, 1645	0, 1600, 1640), 1600, 1645	
 ₽	150	155 154 155(155(154(154(155(154(
UV spectrum , λ_{max} ,	nm (log e)	$\begin{array}{c} 287 \ (4,23); \ 394 \ (3,83) \\ 287 \ (4,30); \ 395 \ (3,88) \\ 203 \ (4,25); \ 282 \ (4,30); \\ 033 \ (4,25); \ 282 \ (4,30); \end{array}$	$\begin{bmatrix} 2.05 & (3, 79) \\ 205 & (4, 40); \\ 207 & (3, 67) \\ 207 & (3$	$\left \begin{array}{ccc} 231 & (3,31) \\ 203 & (4,40); \\ 207 & (2,01) \\ 207 & (2,01) \\ \end{array}\right $	$\begin{bmatrix} 203 & (4,42) \\ 276 & (4,42) \\ 376 & (4,0) \end{bmatrix}$; 284 $(4,25)$;	$\begin{bmatrix} 260 \text{ sh}, (4,13); 287 (4,33); \\ 285 (4,00) \end{bmatrix}$	$\begin{bmatrix} 205 & (4,34); \\ 205 & (4,34); \\ 288 & (4,28); \\ 390 & (3,96) \end{bmatrix}$	
mp, °C		$136\\104{-}105\\164{-}165$	108-109	26	180	118119	160—161	
Reac- tion	time , h	12 <u>18</u> 8	18	18	-	9	9	
R3		SC2H5 SC2H5 SC2H5 SC2H5	SCH ₂ C ₆ H ₅	SCH ₂ C ₆ H ₅	SC_2H_5	SC_2H_5	SCH2C6H5	
	R ²	CH ₃ CH ₃ CH ₃	CH ₃	C_2H_5	CH ₃	CH ₃	CH ₃	
	īж	C2H5 C2H5 C2H5 C2H5	CH2C6H5	CH2C6H5	C ₂ H ₅	C_2H_5	CH2C6H5	
	R	H H C ₆ H ₄ NO ₂	(^{4°}) H	Н	C ₆ H ₅	CH ₃	CH ₃	

¥.
T
-4
H
3
μű
<u>م</u> .
5
ro
й
e U
Ω.
ГЦ
Ч
·H
Ac
c)
٠Ä
5
٠Ĕ
th
Ö
ц Ц
b)
4
Ĺ,
ຕົ
۱
Ч
ġ
ιŋ
1
- f
ě
÷
Ę
μ
<u>y</u>
10
Ц
Ň
EP.
Ę
1
~
÷
τy
다
ne
Ŀ.
70
ف
2
Ĩ
γl
بد
A1
<u> </u>
1
-
.9
r-1
Ē
AB
T_{ℓ}

C 49.4; H 7.4; N 9.9; S 21.7%. C₆H₁₁NOS. Calculated: C 49.6; H 7.6; N 9.7; S 22.1%.

 α -(p-Nitrobenzylidene)-S-ethyl Thioacetoacetate. A 5.8-g (0.04 mole) sample of S-ethyl thioacetoacetate and two drops of piperidine were added to a solution of 6.04 g (0.04 mole) of p-nitrobenzaldehyde in 10 ml of ethanol, and the mixture was allowed to stand at room temperature for 3 days. The precipitated substance was separated and crystallized from ethanol-hexane to give 3.9 g (36%) of a colorless substance with mp 110°C. PMR spectrum: 1.13 (t, 3H, CH₃), 2.27 (s, 3H, CH₃CO), 2.89 (q, 2H, SCH₂), 7.56-7.78 and 8.09-8.31 (m, aromatic protons), and 7.87 ppm (s, 1H, CH=). Found: C 55.6; H 4.9; N 4.9; S 11.2%. C₁₃H₁₃NO₄S. Calculated: C 55.9; H 4.7; N 5.0; S 11.5%.

<u>1,2,6-Trimethyl-3,5-bis(ethylthiocarbonyl)-1,4-dihydropyridine</u>. A 0.56-g (0.01 mole) sample of powdered potassium hydroxide was added to a solution of 1.43 g (0.005 mole) of 2,6-dimethyl-3,5-bis(ethylthiocarbonyl)-1,4-dihydropyridine in 20 ml of acetonitrile, and the mixture was heated on a water bath for 5 min. A 2.13-g (0.015 mole) sample of methyl iodide was added, and the mixture was refluxed on a water bath for 6 h. The same amounts of potassium hydroxide and methyl iodide were added, and the mixture was refluxed for 12 h. The solvent was evaporated *in vacuo*, and the residue was diluted with water. The insoluble precipitate was separated and crystallized from acetonitrile. The characteristics of the synthesized substances are presented in Table 6.

2,6-Dimethyl-3,5-bis(ethylthiocarbonyl)pyridine. A suspension of 1.43 g (0.005 mole) of 2,6-dimethyl-3,5-bis(ethylthiocarbonyl)-1,4-dihydropyridine in 5 ml of 6 N nitric acid was heated to 60°C for 5 min, after which it was cooled, and the resulting precipitate was separated and crystallized from hexane—ethanol. The characteristics of the synthesized compounds are presented in Table 2.

 $\frac{2,4,6-\text{Trimethyl}-3,5-\text{bis}(\beta-\text{phenylthioethoxycarbonyl})-1,4-\text{dihydropyridine (III, X = SC_6H_5)}.}{A 1.3-g (0.01 mole) sample of sodium thiophenoxide was added to a solution of 1.7 g (0.005 mole) of the dichloride prepared in [5] in a mixture of 5 ml of ethanol and 1 ml of dimethyl-formamide (DMF), and the mixture was refluxed for 3 h. The light-yellow solution was poured into 20 ml of water, and the liberated oil was extracted with ether. The extract was dried with anhydrous calcium chloride, the solvent was removed by distillation, and the residue was crystallized from aqueous ethanol to give 0.2 g (8.3%) of a light-yellow substance with mp 83°C. UV spectrum (in ethanol), <math display="inline">\lambda_{max}$ (log ε): 203 (4.56), 239 (4.39), 257 (4.38), and 359 nm (3.90). Found: C 64.2; H 6.1; N 2.8; S 13.3%. C₂₆H₂₉NO₄S₂. Calculated: C 64.6; H 6.0; N 2.9; S 13.3%.

 $\frac{2,4,6-\text{Trimethyl-3-ethoxycarbonyl-5-($\beta-phenylthioethoxycarbonyl)-1,4-dihydropyridine (III, X = H). As in the preceding experiment, the reaction with the monochloride [5] gave a light-yellow substance with mp 86°C (from dilute ethanol) in 27% yield. UV spectrum <math>\lambda_{\text{max}}$ (log ϵ): 203 (4.30), 236 (4.33), 257 (4.34), and 360 nm (3.88). Found: C 64.0; H 6.7; N 3.5; S 8.2%. C₂₀H₂₅NO₄S. Calculated: C 64.0; H 6.7; N 3.7; S 8.5%.

Transesterification of 2,6-Dimethyl-3,5-bis(alkylthiocarbonyl)-1,4-dihydropyridines. A 1.12-g (0.02 mole) sample of finely ground potassium hydroxide was added to a solution of 2.85 g (0.01 mole) of 2,6-dimethyl-3,5-bis(ethylthiocarbonyl)-1,4-dihydropyridine in 5 ml of ethanol, and the mixture was refluxed for 4 h. The solvent was removed by distillation, the residue was treated with water, and the solid material was removed by filtration and crystallized from ethanol to give a light-yellow substance, the properties and physicochemical characteristics of which were in agreement with those described in the literature for 2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine [19].

Transesterification of 2,6-Dimethyl-3-(alkylthiocarbonyl)-5-ethoxy-carbonyl-1,4-dihydropyridines. A 0.28-g (0.005 mole) sample of powdered potassium hydroxide was added to a solution of 2.03 g (0.005 mole) of 2,6-dimethyl-3-(benzylthiocarbonyl)-5-ethoxycarbonyl-1,4-dihydropyridine in 5 ml of methanol, and the mixture was refluxed for 16 h. It was then worked up as in the preceding experiment. The properties of the substances are presented in Table 5.

LITERATURE CITED

- 1. F. Bossert and W. Vater, Naturwissenschaften, 58, 578 (1971).
- M. Iwanami, T. Shibanuma, M. Fujimoto, R. Kawai, K. Tamazawa, T. Takenaka, K. Takahashi, and M. Murakami, Chem. Pharm. Bull., <u>27</u>, 1426 (1979).
- 3. B. Loev, M. M. Goodman, M. K. Snader, R. Tedeschi, and E. Macko, J. Med. Chem., <u>17</u>, 956 (1974).

- 4. G. Ya. Dubur, Yu. A. Zilber, A. Kh. Velena, A. O. Kumerova, and G. D. Tirzit, Izv. Akad. Nauk Latv. SSR, No. 7, 65 (1975).
- 5. Ya. Ya. Ozol, G. O. Silinietse, D. Kh. Mutsenietse, G. Ya. Dubur, B. A. Vigante, A. A. Kimenis, and Yu. A. Zilber, Khim.-farm. Zh., No. 9, 54 (1977).
- 6. Ya. R. Uldrikis, G. Ya. Dubur, I. V. Dipan, and B. S. Chekavichus, Khim. Geterotsikl. Soedin., No. 9, 1230 (1975).
- 7. P. J. Brignell, U. Eisner, and P.G. Farrell, J. Chem. Soc., B, No. 11, 1083 (1966).
- 8. A.E.Sausin', V.K.Lusis, G.Ya. Dubur, and Yu. I. Beilis, Khim. Geterotsikl. Soedin., No. 11, 1508 (1978).
- B. V. Kurgane, A. K. Grinvalde, Ya. P. Stradyn', M. T. Brakmane, and S. A. Giller, Zh. Org. Khim., <u>10</u>, 2306 (1974).
- 10. S. Oae, Organic Chemistry of Sulfur, Plenum Press (1977).
- 11. A. W. Baker and G. H. Harris, J. Am. Chem. Soc., 82, 1923 (1960).
- 12. Ya. P. Stradyn', Yu. I. Beilis, Ya. R. Uldrikis, G. Ya. Dubur, A. E. Sausin', and B. S. Chekavichus, Khim. Geterotsikl. Soedin., No. 11, 1525 (1975).
- Ya. R. Uldrikis, A. O. Kumerova, and G. Ya. Dubur, Khim. Geterotsikl. Soedin., No. 5, 691 (1973).
- 14. Ya. P. Stradyn', G. Ya. Dubur, Yu. I. Beilis, Ya. R. Uldrikis, A. E. Sausin', and B. S. Chekavichus, Khim. Geterotsikl. Soedin., No. 11, 1530 (1975).
- 15. B. A. Vigante, Ya. Ya. Ozol, and G. Ya. Dubur, Khim. Geterotsikl. Soedin., No. 4, 564 (1979).
- Ya. P. Stradyn', G. Ya. Dubur, Yu. I. Beilis, Ya. R. Uldrikis, and A. F. Korotkova, Khim. Geterotsikl. Soedin., No. 1, 84 (1972).
- 17. S. Glickmann and A. C. Cope, J. Am. Chem. Soc., 67, 1017 (1945).
- 18. S. Ruhemann, J. Chem. Soc., 83, 717 (1903).
- 19. V. Ya. Parinov, V. É. Égert, B. K. Tselminya, I. Sh. Zuskovich, G. Ya. Dubur, and Ya. R. Uldrikis, Izv. Akad. Nauk Latv. SSR, Ser. Khim., No. 1, 62 (1974).
- 20. W. Trauber and P. Karrer, Helv. Chim. Acta, 41, 2066 (1958).